Unified heat kernel regression for diffusion, kernel smoothing and wavelets on manifolds and its application to mandible growth modeling in CT images

نویسندگان

  • Moo K. Chung
  • Anqi Qiu
  • Seongho Seo
  • Houri K. Vorperian
چکیده

We present a novel kernel regression framework for smoothing scalar surface data using the Laplace-Beltrami eigenfunctions. Starting with the heat kernel constructed from the eigenfunctions, we formulate a new bivariate kernel regression framework as a weighted eigenfunction expansion with the heat kernel as the weights. The new kernel method is mathematically equivalent to isotropic heat diffusion, kernel smoothing and recently popular diffusion wavelets. The numerical implementation is validated on a unit sphere using spherical harmonics. As an illustration, the method is applied to characterize the localized growth pattern of mandible surfaces obtained in CT images between ages 0 and 20 by regressing the length of displacement vectors with respect to a surface template.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unified Kernel Regression for Diffusion Wavelets on Manifolds Detects Aging-Related Changes in the Amygdala and Hippocampus

We present a new unified kernel regression framework on manifolds. Starting with a symmetric positive definite kernel, we formulate a new bivariate kernel regression framework that is related to heat diffusion, kernel smoothing and recently popular diffusion wavelets. Various properties and performance of the proposed kernel regression framework are demonstrated. The method is subsequently appl...

متن کامل

Heat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions Submitted to IEEE Transactions on Medical Imaging

We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...

متن کامل

Two-step Smoothing Estimation of the Time-variant Parameter with Application to Temperature Data

‎In this article‎, ‎we develop two nonparametric smoothing estimators for parameter of a time-variant parametric model‎. ‎This parameter can be from any parametric family or from any parametric or semi-parametric regression model‎. ‎Estimation is based on a two-step procedure‎, ‎in which we first get the raw estimate of the parameter at a set of disjoint time...

متن کامل

Heat Kernel Smoothing and its Application to Cortical Manifolds

In brain imaging analysis, there is a need for analyzing data collected on the cortical surface of the human brain. Gaussian kernel smoothing has been widely used in this area in conjunction with random field theory for analyzing data residing in Euclidean spaces. The Gaussian kernel is isotropic in Euclidian space so it assigns the same weights to observations equal distance apart. However, wh...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Medical image analysis

دوره 22 1  شماره 

صفحات  -

تاریخ انتشار 2015